Tag Archives: Physics

My latest paper on E8, the H4 folding matrix, and integration with octonions and GraviGUT physics models.

The full paper with appendix can be found on this site, or w/o appendix on viXra. (13 pages, 14 figures, 20Mb). The 22 page appendix contains the E8 algebra roots, Hasse diagram, and a complete integrated E8-particle-octonion list.

E82DPetriePhysics

Abstract:
This paper will present various techniques for visualizing a split real even E8 representation in 2 and 3 dimensions using an E8 to H4 folding matrix. This matrix is shown to be useful in providing direct relationships between E8 and the lower dimensional Dynkin and Coxeter-Dynkin geometries contained within it, geometries that are visualized in the form of real and virtual 3 dimensional objects. A direct linkage between E8, the folding matrix, fundamental physics particles in an extended Standard Model GraviGUT, quaternions, and octonions is introduced, and its importance is investigated and described.

If you would like to cite this, you can use this BibTex format if you like (remove the LaTex href tag structure if you don’t use the hyperref package):


@article{Moxness2014:006,
title={{The 3D Visualization of E8 using an H4 Folding Matrix}},
author={Moxness, J. G.},
journal={href{http://vixra.org/abs/1411.0130}{www.vixra.org/abs/1411.0130}},
year={2014},
month = nov,
adsurl={http://vixra.org/abs/1411.0130}
}

paper

Fun with 8D rotations of E8

This is a little clip containing three different 8 dimensional rotations of E8. While it may seem like a simple rotation of an object in 3-space, if you look carefully (especially the first rotation), you can see sets of vertices moving in different directions.

The object (the 240 vertices of E8 along with 1220 of 6720 edges of 8D length Sqrt[2]) is not “moving”. It is the camera that is moving in an 8 dimensional space.

Best when viewed in HD!

The previous 3D animations here and here are created by projecting the 8 dimensional object of E8 into 3 and simply rotating (spinning) that object around in 3-space. I like to call those animations 4D, since animation visualizes changes over time – a 4D space-time object if you will…

E8 to 3D projection using my H4 folding matrix

Best viewed in HD mode…

Last year I showed that the Dynkin diagram of the Lie Algebra, Group and Lattice of E8 is related to the Coxeter-Dynkin of the 600 Cell of H4 through a folding of their diagrams:
E8-H4-Fold

I had found the E8 to H4 folding matrix several years ago after reading several papers by Koca and another paper by Dechant, on the topic. The matrix I found is:
C600

Notice that C600=Transpose[C600] and the QuaternionOctonion like structure (ala. Cayley-Dickson) within the folding matrix. Only the first 4 rows are needed for folding, but I use the 8×8 matrix to rotate 8D vectors easily.

The following x,y,z vectors project E8 to its Petrie projection on one face (or 2 of 6 cubic faces, which are the same).
E8projection

On another face are the orthonormal H4 600 cell and the concentric H4/Phi. There are 6720 edges with 8D Norm’d length of Sqrt[2], but I only show 1220 in order to prevent obscuring the nodes.

These values were calculated using the dot product of the Inverse[4*C600] with the following H4 Petrie projection vertices (aka. the Van Oss projection), where I’ve added the z vector for the proper 3D projection. Notice I am still using 8D basis vectors with the last 4 zero, as this maintains scaling due to the left-right symmetries in C600).
H4projection

The Split Real Even (SRE) E8 vertices are generated from the root system for the E8 Dynkin diagram and its resulting Cartan matrix:
E8Dynkin

This is input from my Mathematica “VisibLie” application. It is shown with the assigned physics particles that make up the simple roots matrix entries:
srE8.
Please note, the Cartan matrix can also be generated by srE8.Transpose[srE8]

It takes Transpose[srE8] and applies the dot product against the 120 positive and 120 negative algebra roots generated by the Mathematica “SuperLie” package (shown along with its Hasse diagram, which I generate in the full version of my Mathematica notebook):
E8_Hasse

Interestingly, E8 in addition to containing the 8D structures D8 and BC8 and the 4D Polychora, contains the 7D E7, as well as the 6D structures of the Hexeract or 6 Cube. I also showed several years ago that this projects down to the 3D as the Rhombic Triacontahedron. The Rhombic Triacontahedron (of Quasicrystal fame) contains the Platonic Solids including the Icosahedron and Dodecahedron! This is shown to be done through folding of D6 to H3 using rows 2 through 4 of the E8 to H4 folding matrix!!

D6_H3fold

E8-8D-Polytopes-2

E8-4D-Polychora-2

E8-3D-Platonic-2

outE821b

Animated movies of comet Siding Spring passing Mars

Check out a little animation I did using my research tool. It is of the comet Siding Spring that gave Mars a close shave this weekend….

If you want to create a version yourself, all you need is the free Wolfram CDF player and go to my interactive visualization tool at:
http://theoryofeverything.com/MyToE/?page_id=755

Select the NBody Gravitational Universe simulation and select the “Recombination” epoch (the last one on the timeline).

Please note, there are two distance scales (outer planets to start, and quickly switches to inner planets as it gets close to Mars).
The planets are scaled relative to each other in each of these scales, but not relative to the Astronomical Unit distance scale between them.
BTW – The Sun is not shown, since at that planetary scale it is actually bigger than the frame of the animation 🙂

The time scale goes from last year to next year. It changes from linear around this weekend (0s) and goes exponential on the outer orbits.

Comet Siding Spring passing by Mars

I’ve been working w/the solar system data plots. Here is my version of the Siding Spring comet orbital path metadata – except with the planets given some scale and surface imagery.

It is created using an interactive CDF viewer available at http://theoryofeverything.com/MyToE/?page_id=755 (Selecting the interaction pane for Universal NBody gravitational simulator and selecting the current “Solar System” Epoch.

CometSidingSpring

If you want to create a version yourself, all you need is the free Wolfram CDF player and go to the interactive visualization tool referenced above. Select the NBody Gravitational Universe simulation and select the “Recombination” epoch (the last one on the timeline).

Please note, there are two distance scales (outer planets to start, and quickly switches to inner planets as it gets close to Mars).
The planets are scaled relative to each other in each of these scales, but not relative to the Astronomical Unit distance scale between them.
BTW – The Sun is not shown, since at that planetary scale it is actually bigger than the frame of the animation 🙂

The time scale goes from last year to next year. It changes from linear around this weekend (0s) and goes exponential on the outer orbits.

Mathematica MyToE on the Wolfram Cloud

I am playing around with the Wolfram Tweet-a-Program, and the Wolfram Language (i.e. Mathematica) on the Wolfram Cloud.

What’s really cool is that you can now interact with advanced math and HPC on your phone/tablet.

Here are a few results…
@Wolframtap

ByeDZ-oIgAA8tZz

ByzPbCqIQAAzUJq.png large

BTW – you will need a WolframID (and be logged into WolframCloud.com) to interact with these pages.

Octonions: The Fano Plane & Cubic

MTMcloud-Fano

Dynkin Diagrams

MTMcloud-Dynkin

E8 and Subgroup Projections

MTMcloud-E8

Particle Selector

MTMcloud-Particle

Hadron Builder

MTMcloud-Hadron

Navier-Stokes Chaos Theory, 6D Calabi-Yau and 3D/4D Surface visualizations

MTMcloud-Chaos

Solar System (from NBody Universe Simulator)

MTMcloud-NBody
4D Periodic Table

MTMcloud-Atom

Universal History Simulations Added

I’ve added more features to the Universal History N-Body Gravity OpenCL GPU Simulation. Here are a few snapshots…

Big Bang – Planck Epoch
outNBody_1a (7)

Inflationary Epoch(s) w/Pre & Post (These are built into my ToE as an accelerating space-time, varying FineStructure, c and hBar)

ElectroWeak Symmetry Breaking Epoch
outNBody_1a (10)

Quark-Gluon Plasma Epoch
outNBody_1a (11)

Meson Epoch
outNBody_1a (5)

Baryon Epoch
outNBody_1a (4)

Lepton Epoch
outNBody_1a (6)

Big Bang NuceloSynthesis Epoch- Nuclei of Hydrogen/Helium/Lithium
outNBody_1a (2)

Photon Epoch- Atoms of Hydrogen/Helium/Lithium
outNBody_1a (3)

Matter Dominated Stellar NucleoSynthesis- Quasars
outNBody_1a (9)

ReIonization- Galaxies
Galaxy

Dark Ages- Large Scale Structure
outNBody_43a

Recombination- Solar Systems/Chemistry/Biology/Sociology
outNBody_1a (8)